Mass Extrapolations in the Region of Deformed Rare Earth Nuclei

C.Borcea ${ }^{a}$ and G.Audi ${ }^{b}$
${ }^{a}$) IFIN-HH, P.O. Box MG-6, 76900 Bucharest-Magurele, Romania
${ }^{\text {b }}$) CSNSM-Orsay, Bât.108, 91405 Orsay Campus, France

Abstract

A procedure based on the regularity property of the mass surface is proposed to make predictions for the masses of neutron rich deformed nuclei in the rare earth region. Tables are given for the estimated masses; they extend up to the presumed limit of the deformation region.

A striking aspect of the chart of nuclides in the rare earth region is the deep "gulf" present on the neutron rich side. In this "gulf" the last known isotopes are often only 4-6 neutrons away from the stable isotopes while model predictions for the neutron drip line lay much further away. The limit of nuclei for which masses are known comes even closer. The onset of important deformation effects starting above $N=88-90$ is another characteristic of the region. In addition, some isotopic chains contain a rather small number of measured masses, centered around the stable isotopes. All these facts make this region a difficult one for mass predictions. Indeed, a comparison between the values given by various models for the isotopes beyond the last measured one indicates a growing divergence when one goes away from the last experimental values.

Based on the global property of regularity of the surface of masses, a method has been developed [1] to extrapolate starting from the known masses into the adjacent regions. It starts from the observation that derivative quantities like $\mathrm{S}_{2 n}$ or $\mathrm{S}_{2 p}$ (which are not affected by the staggering effects due to pairing) align themselves on straight lines when displayed as a function of neutron or respectively proton number. That will suggest a quadratic dependence on N or Z. This is valid only for a regular region in which neither shell (or subshell) closure appears, nor deformations in the ground state. At a closer look, these lines show a slight curvature. Consequently we tried a cubic (in N and Z) local fit of the masses of nuclei comprised in between two magic numbers both for neutrons and protons. Perhaps the most convenient region to test such a procedure is that of nuclei having N and Z in between magic numbers 28 and 50, as can be seen in [2]. Indeed, the result was quite encouraging: the rms deviation of the fitted values with respect to the data was 67 keV , while the same $r m s$ was higher for other model predictions [3]; e.g. 106
keV for the model of Duflo with 12 parameters [4], or 161 keV for the macroscopicmicroscopic model of Möller [5]. In principle, the described method could provide reliable extrapolations for the next $4-5$ masses, but in some particular cases its range of validity may extend further away. The procedure has been tested simply by excluding from the fit few (3-4) of the last known masses in each isotopic chain; the retrieved values agreed excellently with the real ones. For nuclei in the rare earth region the method encounters serious difficulties because here the regularity property is broken by the extra binding brought by the onset of deformation. However, one can still apply it to the region of masses with $50 \leq Z \leq 82$ and $82 \leq N \leq 126$ from which the deformed nuclei have been excluded. Though the number of nuclei left after this procedure is rather small, the fit is stable and leads to a hypothetical smooth mass surface for which the deformations are absent. By comparing to the real mass surface, the deformation region shows up prominently, presenting neat contours and a well developed symmetry The deformation sets in after $N=88$ and its amplitude grows gradually up to a maximum value; then it starts decreasing and disappears at $N=116$. The extension on Z ranges from Cs to Ir (with a small effect in both cases), having a maximum amplitude around $Z=68$. The position of maximum overbinding due to deformation along each isotopic chain varies from $N=100$ for small Z to $N=106$ for large Z. While for high Z the isotopic chains are almost complete from the point of view of measured masses, for lower Z the chains become ever shorter. Upper chains may therefore provide information on the trends that can be used to complete the others. This operation is facilitated by the continuous comparison with the hypothetical undeformed mass surface where all isotopic chains should land at the end of the deformation region. The amplitude of the overbinding brought by the deformation could also be estimated and amounts to 5 MeV at the maximum of this effect (for ${ }^{168} \mathrm{Dy}$). Interestingly, most of the systematic values given in the tables of Audi and Wapstra [6], lay very close or overlap the extrapolated values. Table 1 is a list of masses estimated by this procedure for nuclei supposed to belong to the deformation region and that are not yet measured, from Xe to Ta. Only the values placed after the systematic values of Audi and Wapstra are given.

New mass measurement in this region, the sole criterium of validity for extrapolations and mass models are therefore strongly advocated.

REFERENCES

1. C. Borcea and G. Audi, Rom. Jou. Phys. 38 (1993), 455
2. C. Borcea et al., Nucl. Phys. A565 (1993), 158
3. Web site: http://csnwww.in2p3.fr/amdc/
4. J. Duflo and A. P. Zuker, Phys. Rev. C52 (1995), 23 and private communication
5. P. Möller et al., At. Data and Nucl. Data Tables 59 (1995), 185
6. G. Audi and A. H. Wapstra, Nucl. Phys. A565 (1993), 1

TABLE 1. Mass excess predictions (in MeV) for the rare earth deformed nuclei situated between Xe and Ta. The predictions start after the last systematic value in the tables of Audi and Wapstra and extend for each isotopic chain up to the expected end of the deformation region.

$\left.$| Nucleus | Mass
 excess
 (MeV) | Nucleus | Mass
 excess
 (MeV) | | Nucleus | Mass
 excess
 (MeV) | Nucleus |
| :---: | :---: | :--- | :---: | :---: | :---: | :---: | :---: | | Mass |
| :---: |
| excess |
| (MeV) | \right\rvert\,

TABLE 1. (continuation)

Nucleus	$\begin{gathered} \text { Mass } \\ \text { excess } \\ (\mathrm{MeV}) \\ \hline \end{gathered}$	Nucleus		Nucleus	$\begin{gathered} \text { Mass } \\ \text { excess } \\ (\mathrm{MeV}) \end{gathered}$	Nucleus	
168 Eu	-39.350	180Gd	5.700	183Dy	-1.290	183 Tm	-27.900
169 Eu	-35.920	181Gd	11.750			184 Tm	-23.760
170 Eu	-31.140			176Ho	-38.930	185 Tm	-19.960
171 Eu	-27.330	172 Tb	-39.260	177Ho	-35.770	186 Tm	-15.650
172 Eu	-22.200	173 Tb	-35.960	178Ho	-31.630		
173 Eu	-18.000	174 Tb	-31.440	179Ho	-28.120	182 Yb	-38.580
174 Eu	-12.530	175 Tb	-27.760	180Но	-23.690	183 Yb	-34.830
175 Eu	-7.990	176 Tb	-22.990	181Ho	-19.880	184 Yb	-32.070
176 Eu	-2.250	177 Tb	-19.020	182Ho	-15.080	185 Yb	-28.000
177 Eu	2.650	178 Tb	-13.970	183Ho	-10.930	186 Yb	-24.880
178 Eu	8.630	179 Tb	-9.620	184Ho	-5.990	187 Yb	-20.630
179 Eu	13.970	180 Tb	-4.300				
180 Eu	20.110	181 Tb	0.400	178 Er	-40.020	185 Lu	-33.580
		182 Tb	5.920	179 Er	-35.940	186 Lu	-29.960
170Gd	-40.890			180 Er	-33.100	187 Lu	-26.810
171 Gd	-36.310	174Dy	-40.590	181 Er	-28.710	188 Lu	-23.090
172Gd	-32.910	175Dy	-36.310	182 Er	-25.430		
173Gd	-28.000	176Dy	-33.110	183 Er	-20.690	187Hf	-32.950
174 Gd	-24.260	177Dy	-28.530	184 Er	-16.940	188Hf	-30.640
175Gd	-18.990	178Dy	-24.940	185 Er	-12.100	189Hf	-26.970
176Gd	-14.900	179Dy	-20.080		.	190Hf	-25.140
177Gd	-9.330	180Dy	-16.180	180 Tm	-38.010		
178Gd	-4.910	181Dy	-11.040	181 Tm	-35.070	189 Ta	-31.560
179Gd	0.960	182Dy	-6.730	182 Tm	-31.210	190 Ta	-28.360

